Dimensional dependence of phonon transport in freestanding atomic layer systems.

نویسندگان

  • Duckjong Kim
  • Yun Hwangbo
  • Lijing Zhu
  • Alexander E Mag-Isa
  • Kwang-Seop Kim
  • Jae-Hyun Kim
چکیده

Due to the fast development of nanotechnology, we have the capability of manipulating atomic layer systems such as graphene, hexagonal boron nitride and dichalcogenides. The major concern in the 2-dimensional nanostructures is how to preserve their exceptional single-layer properties in 3-dimensional bulk structures. In this study, we report that the extreme phonon transport in graphene is highly affected by the graphitic layer stacking based on experimental investigation of the thermal conduction in few-layer graphene, 1-7 layers thick, suspended over holes of various diameters. We fabricate freestanding axisymmetric graphene structures without any perturbing substrate, and measure the in-plane transport property in terms of thermal conduction by using Raman spectroscopy. From the difference in susceptibility to substrate effect, size effect on hot-spot temperature variation and layer number dependence of thermal conductivity, we show that the graphitic membranes with 2 or more layers have characteristics similar to 3-dimensional graphite, which are very different from those of 2-dimensional graphene membranes. This implies that the scattering of out-of-plane phonons by interlayer atomic coupling could be a key mechanism governing the intrinsic thermal property.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermal transport in bismuth telluride quintuple layer: mode-resolved phonon properties and substrate effects

The successful exfoliation of atomically-thin bismuth telluride (Bi2Te3) quintuple layer (QL) attracts tremendous research interest in this strongly anharmonic quasi-two-dimensional material. The thermal transport properties of this material are not well understood, especially the mode-wise properties and when it is coupled with a substrate. In this work, we have performed molecular dynamics si...

متن کامل

Two-dimensional phonon transport in graphene.

Properties of phonons-quanta of the crystal lattice vibrations-in graphene have recently attracted significant attention from the physics and engineering communities. Acoustic phonons are the main heat carriers in graphene near room temperature, while optical phonons are used for counting the number of atomic planes in Raman experiments with few-layer graphene. It was shown both theoretically a...

متن کامل

Enhanced energy transport owing to nonlinear interface interaction

It is generally expected that the interface coupling leads to the suppression of thermal transport through coupled nanostructures due to the additional interface phonon-phonon scattering. However, recent experiments demonstrated that the interface van der Waals interactions can significantly enhance the thermal transfer of bonding boron nanoribbons compared to a single freestanding nanoribbon. ...

متن کامل

Phonon Transport in Graphene

Properties of phonons – quanta of the crystal lattice vibrations – in graphene have attracted strong attention of the physics and engineering communities. Acoustic phonons are the main heat carriers in graphene near room temperature while optical phonons are used for counting the number of atomic planes in Raman experiments with few-layer graphene. It was shown both theoretically and experiment...

متن کامل

Electrical and thermal conduction in ultra-thin freestanding atomic layer deposited W nanobridges.

Work presented here measures and interprets the electrical and thermal conductivities of atomic layer deposited (ALD) free-standing single film and periodic tungsten and aluminum oxide nanobridges with thicknesses from ∼5-20 nm and ∼3-13 nm, respectively. Electrical conductivity of the W films is reduced by up to 99% from bulk, while thermal conductivity is reduced by up to 91%. Results indicat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 5 23  شماره 

صفحات  -

تاریخ انتشار 2013